

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany

Phone +49 30 772051-0 • Fax +49 30 7531078

E-Mail: sales@shf-communication.com • Web: www.shf-communication.com

Datasheet SHF C991 A Arbitrary Clock Distribution

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 1/18

Description

The SHF C991 A is a versatile broad band clock distribution providing copies of the incoming clock at different divider ratios.

Features

- Broadband operation from 4 to 64 GHz.
- Multiple clock outputs at different divider ratios.
- Controlled by intuitive graphical user interface BERT Control Center (BCC) via USB
- Controlled by intuitive graphical user interface SHF Control Center (SCC) via USB

Applications

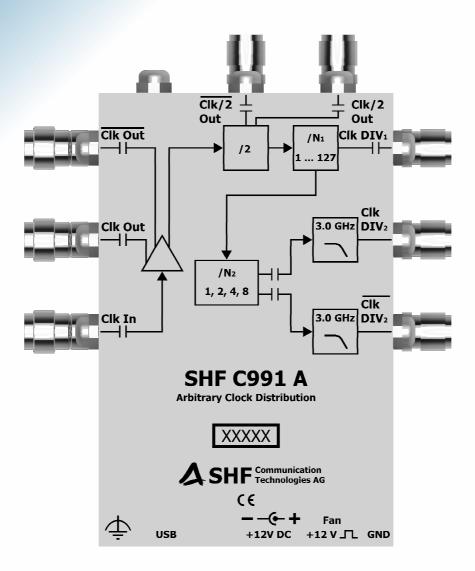
Test setups are always an interaction of different parts; sophisticated setups may include many different instruments and modules. To operate concurrently a common clock signal is often indispensable. However, frequency requirements of the instruments and modules are very different. A clock distribution is supposed to provide clock signals derived from the master clock (input) at a frequency fraction exactly fitting to the individual requirements.

Some examples for a high-speed (> 40 GHz) clock system are a listed below:

- The clock input is fed with a signal from a signal generator like the SHF 78122 A.
- The full clock outputs can be used to drive remote heads like SHF's DACs, Multiplexers, Demultiplexers or PAM-Multiplexers.
- By selecting the appropriate fraction of the Clock DIV₁ output almost all precision time bases, or phase references of commercially available equivalent-time sampling scopes can be driven.
- By setting the LPF Clock output to the appropriate frequency band, the derived signal can be used to synchronize the AWGs with external clock domains and with minimum possible timing jitter, avoiding additional phase-locked-loops which are sometimes used by other vendor's instruments for clock synchronization. Such AWGs are widely deployed in today's optical test laboratories (like e.g. the Keysight[®] M8196A).

With such a connection of instruments is it possible to enhance the speed and the capabilities of different vendors AWGs¹ with one of SHF's remote head modules. This makes it possible e.g. to generate 120 GBaud PAM4 signals with Keysight's[®] M8196 A connected to SHF's 616 C PAM-Multiplexer.

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 2/18



[®] Keysight is a registered trademark of Keysight Technologie Inc.

¹ With SHF's BPGs or AWGs a clock distribution is not required as our instruments provide all required clock signals right away.

Block Diagram

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 3/18

Accessories

- +12 V Power Supply Desktop Adapter
- Functional Earth Cable
- Mini-USB cable

Absolute Maximum Ratings

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Input Parameters						
Input Amplitude	mV	V _{Clk} in			1000	Peak-to-Peak
External DC Voltage on RF Input Port	V	V_{DC} in	-6		+6	AC coupled port
External DC Voltage on RF Output Ports	V	VDC out	-6		+6	AC coupled ports
DC Supply Voltage	V	Vcc	0		+14	

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 4/18

Specifications – SHF C991 A

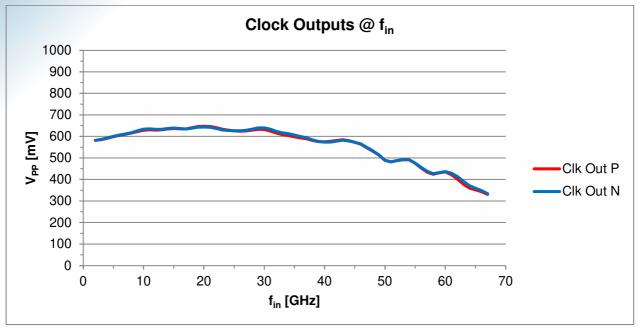
Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment	
Input Frequency							
Minimum Input Frequency	GHz	fin min			4	N₁ ≤ 20	
Maximum Input Frequency	GHz	fin max	48 64			N ₁ = 1 N ₁ ≥ 2	
Input Amplitude							
Input Amplitude	mV _{pp}	Vin	200	600	900	AC coupled Single ended	
Output Frequency							
Clock Out	GHz	f _{out}	4		64	fin	
Clock /2 Out	GHz	f _{out}	2		32	f _{in} /2	
Clock DIV ₁ Out	GHz	f _{out}	0.10		24	f _{in} /(2×N ₁) N ₁ = 1…127	
Clock DIV ₂ Out	GHz	fout	0.05		3	$f_{in} / (2 \times N_1 \times N_2)$ N ₂ = 1,2,4,8	
Output Amplitude							
Clock Out	mV_{pp}	V _{out}	300		700	AC coupled Single ended	
Clock /2 Out	mV _{pp}	Vout	600		900	AC coupled Single ended	
Clock DIV1 Out	mV _{pp}	Vout	500		900	AC coupled Single ended	
Clock DIV ₂ Out	mV _{pp}	Vout	600		900	AC coupled Single ended	

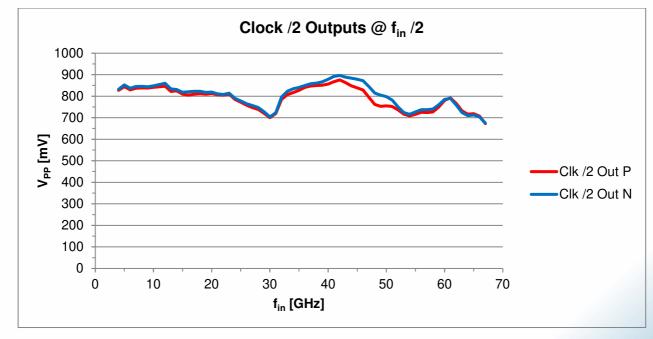
SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 5/18

Specifications – SHF C991 A

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment	
Power Requirement							
Supply Voltage	V	Vcc	+11.5	+12.0	+12.5		
Supply Current	A	Icc		0.69 0.95		Without heat sink With heat sink	
Power Dissipation	W	Pd		8.3 11.4		Without heat sink With heat sink @ V _{CC} = +12 V	
Integrated Fan Control ²							
Output Voltage Fan	V	V _{Fan+12V}		+12			
Output Current Fan	А	I _{Fan+12V}		0.26			
Output Frequency Fan	Hz	f _{Fan+12V}		30			
Input Tacho Fan	V	VFan Tacho		3.3			
Mechanical Characteristics							
Clock In	Ω			50		1.85 mm (V) female	
Clock Out	Ω			50		1.85 mm (V) female	
Clock /2 Out	Ω			50		2.92 mm (K) female	
Clock DIV1 Out	Ω			50		2.92 mm (K) female	
Clock DIV ₂ Out	Ω			50		2.92 mm (K) female	
Dimensions	mm					See Outline Drawing pages 17 / 18	
Weight	g			190 480		Without heat sink With heat sink	
Conditions							
Operating Temperature	°C	Tambient	15		35		

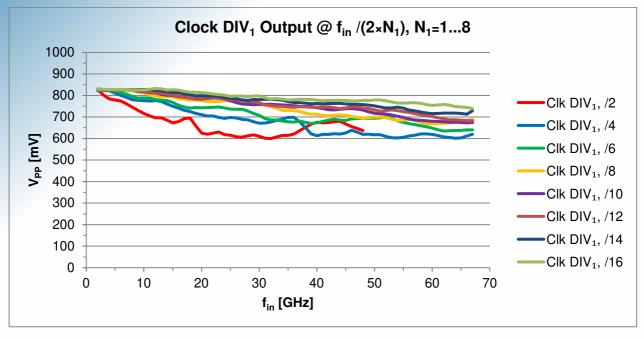
SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 6/18


² Use only with the supplied heat sink and fan!

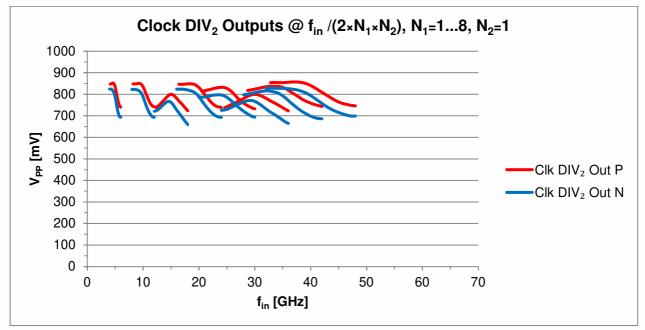

Typical Output Amplitudes @ 2.0 GHz \leq Clk DIV₂ \leq 3.0 GHz

The measurements below have been performed using an Anritsu[®] signal generator (MG3697C) and a Tektronix[®] Digital Serial Analyzer (DSA8300) with a Phase Reference Module (82A04B-60G) and a 70 GHz Sampling Module (80E11). The outputs of the Clock distribution module had been connected directly to the DSA input. Input power of the clock signal is 0 dBm (630 mV_{pp}).

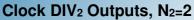
Clock /2 Outputs

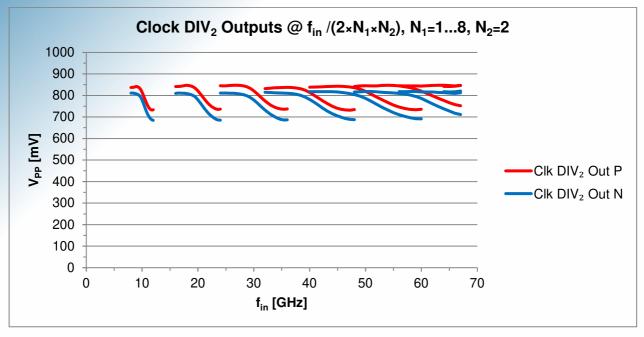

[®] Anritsu is a registered trademark of Anritsu Corporation, Tektronix is a registered trademark of Tektronix Inc.

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 7/18

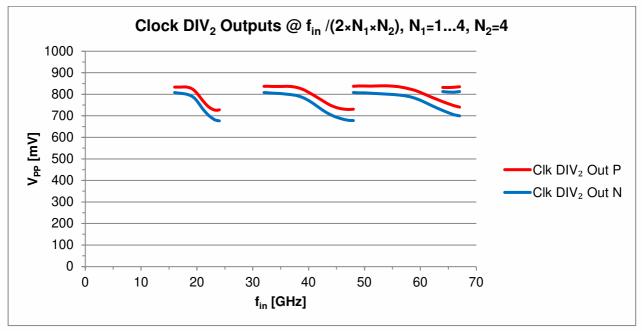


Clock DIV₁ Output, N₁=1...8

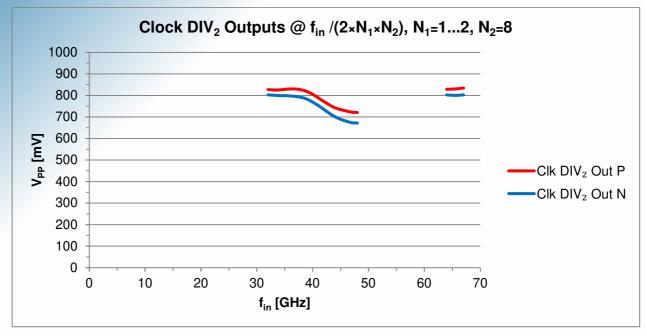

Clock DIV₂ Outputs, N₂₌₁



SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 8/18



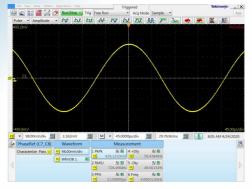
Clock DIV₂ Outputs, N₂₌₄

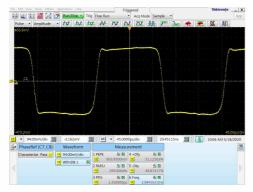


SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 9/18

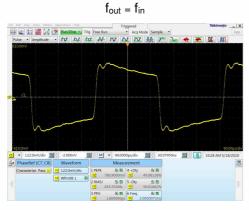
Clock DIV₂ Outputs, N₂₌₈

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 10/18

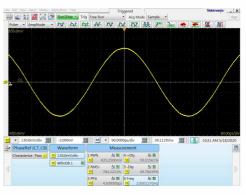



Typical Output Waveforms @ 2.0 GHz \leq Clk DIV₂ \leq 3.0 GHz

The measurements below have been performed using an Anritsu[®] signal generator (MG3697C) and a Tektronix[®] Digital Serial Analyzer (DSA8300) with a Phase Reference Module (82A04B-60G) and a 70 GHz Sampling Module (80E11). The outputs of the Clock distribution module had been connected directly to the DSA input. Input power of the clock signal is 0 dBm (630 mV_{pp}).


Clock Outputs @ 4.0 GHz Clock Input

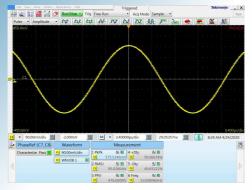
4.0 GHz input signal


4.0 GHz output signal @ Clk Out

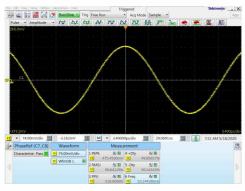
2.00 GHz output signal @ Clk DIV1 Out $f_{out} = f_{in} \ /(2 \times N1), \ N1 = 1$

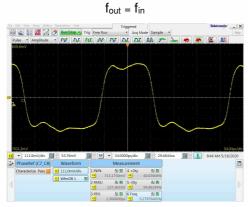
2.0 GHz output signal @ Clk /2 Out $f_{out} = f_{in} /2$

2.00 GHz output signal @ Clk DIV₂ Out $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 1, N_2 = 1$

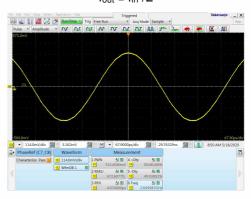

[®] Anritsu is a registered trademark of Anritsu Corporation, Tektronix is a registered trademark of Tektronix Inc.

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 11/18



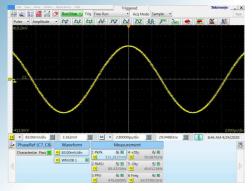

Clock Outputs @ 53.0 GHz Clock Input


53.0 GHz input signal

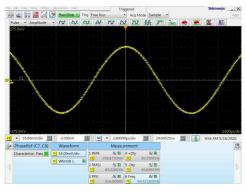

53.0 GHz output signal @ Clk Out

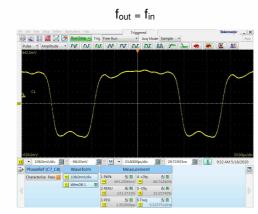
5.30 GHz output signal @ Clk DIV1 Out $f_{out} = f_{in} \ /(2{\times}N1), \ N1{=}5$

26.5 GHz output signal @ Clk /2 Out $f_{out} = f_{in} \ /2$



2.65 GHz output signal @ Clk DIV₂ Out $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 5, N_2 = 2$




Clock Outputs @ 64.0 GHz Clock Input

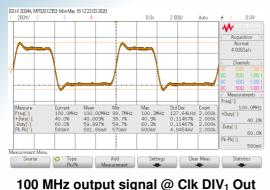
64.0 GHz input signal

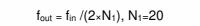

64.0 GHz output signal @ Clk Out

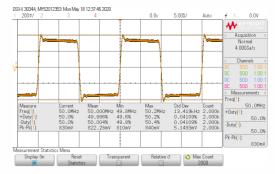
5.33 GHz output signal @ Clk DIV1 Out $f_{out} = f_{in} \ /(2{\times}N1), \ N1{=}6$

32.0 GHz output signal @ Clk /2 Out $f_{out} = f_{in} \ /2$

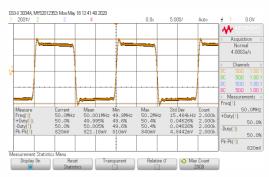
2.67 GHz output signal @ Clk DIV₂ Out $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 6, N_2 = 2$

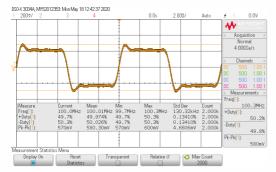

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 13/18




Typical Output Waveforms @ Clk DIV₂ < 2.0 GHz

The measurements below have been performed using an Anritsu[®] signal generator (MG3697C) and a Keysight[®] Digital Storage Oscilloscope (DSO-X 3034A). The outputs of the Clock distribution module had been connected directly to the DSO input. Input power of the clock signal is 0 dBm (630 mV_{pp}).


Clock Outputs @ 4.0 GHz Clock Input, N1=20


50 MHz output signal @ Clk DIV₂ Out

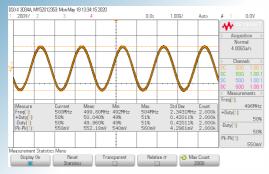
 $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 20, N_2 = 2$

50 MHz output signal @ Clk DIV₂ Out $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1=32, N_2=2$

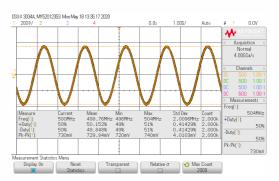
Clock Outputs @ 6.4 GHz Clock Input, N1=32

100 MHz output signal @ Clk DIV1 Out

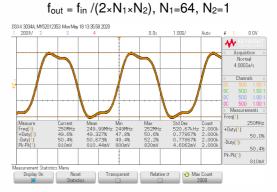
 $f_{out} = f_{in} / (2 \times N_1), N_1 = 32$


[®] Anritsu is a registered trademark of Anritsu Corporation, Keysight is a registered trademark of Keysight Technologie Inc.

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 14/18



Clock Outputs @ 64.0 GHz Clock Input, N1=64

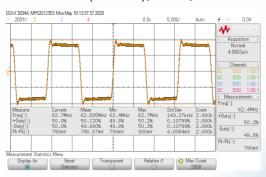


500 MHz output signal @ Clk DIV1 Out

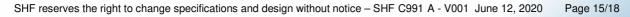
 $f_{out} = f_{in} / (2 \times N_1), N_1 = 64$



500 MHz output signal @ Clk DIV₂ Out

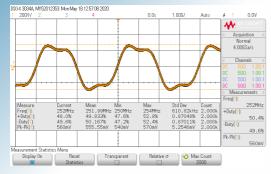

250 MHz output signal @ Clk DIV₂ Out

 $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 64, N_2 = 2$


2.67 MHz output signal @ Clk DIV₂ Out

$f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 64, N_2 = 4$

62.5 MHz output signal @ Clk DIV₂ Out


 $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 64, N_2 = 8$



Clock Outputs @ 64.0 GHz Clock Input, N1=127



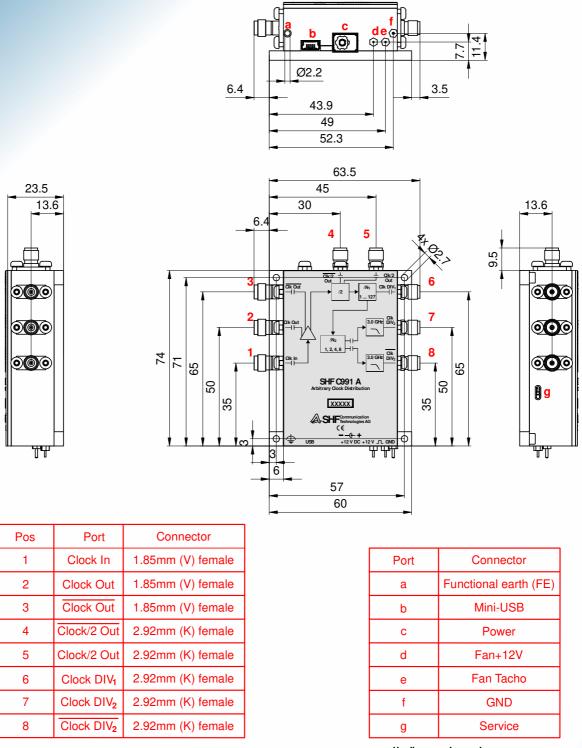
251.97 MHz output signal @ Clk DIV1 Out

 $f_{out} = f_{in} / (2 \times N_1), N_1 = 127$

251.97 MHz output signal @ Clk DIV₂ Out

125.98 MHz output signal @ Clk DIV₂ Out

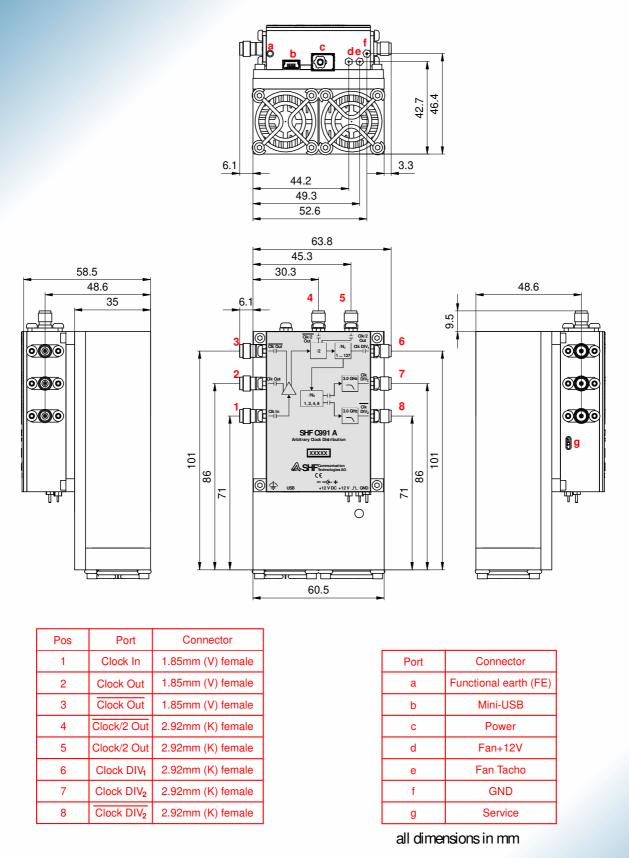
 $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 127, N_2 = 2$


62.99 MHz output signal @ Clk DIV₂ Out

 $f_{out} = f_{in} / (2 \times N_1 \times N_2), N_1 = 127, N_2 = 4$

A

Mechanical Drawing


all dimensions in mm

SHF reserves the right to change specifications and design without notice – SHF C991 A - V001 June 12, 2020 Page 17/18

A

Mechanical Drawing

SHF reserves the right to change specifications and design without notice - SHF C991 A - V001 June 12, 2020 Page 18/18

